

Laboratory Directed Research and Development (LDRD) Policy and Procedures CC2.0 Brown Bag

Horst D. Simon

Deputy Director

February 18, 2011

LDRD Program

- Congressionally allowed with restrictions;
 a privilege that can be revoked
- About 3% (4.5% with G&A) of the Laboratory's operating and capital equipment budgets
- Overhead funded

LDRD Projects ARE...

- Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems
- Experiments and analyses directed toward proof-of -principle or early determination of the utility of new scientific ideas, technical concepts, or devices
- Conception and preliminary technical analysis of experimental facilities or devices

LDRD Projects are NOT...

- Augmentation or supplementation of other funding
- Non-R&D activities (except as essential for the project to be self-contained; e.g. not high administrative costs)
- Creation or support of Centers, Institutes, or Facilities
- Workshops and conferences

LDRD Rules

- Relevant to a DOE mission or national need
- DOE Order plus other memos (Abraham and Orbach) as incorporated into the Call for Proposals
- Follow DOE program rules unless specific LDRD rules (e.g., EH&S, NEPA/CEQA, Human & Animal Use, Travel, Cost Accounting)
- Well-managed (e.g., monthly cost profiles)

Questions

- Question and Answer Session
- Handouts:
 - Today's presentation
 - LDRD Guidelines
- Questions on LDRD policy:

Administrative: Todd Hansen, tchansen@lbl.gov (x6105)

Carbon Cycle 2.0 Core Objectives

Advance fundamental science

- Materials science, chemistry, biochemistry and biophysics to pave the way for new energy-producing and energy-saving technologies
- Biology, geology, hydrology, and ecosystem dynamics to understand natural feedbacks in the climate and hydrologic systems and to promote carbon sequestration and alternative low-carbon natural energy sources
- Climate simulations to enable clear definition of climate change impacts and, by integrating with energy analysis, improve life-cycle analysis of mitigation strategies and new energy technologies
- Promote integration of applied, use-inspired, and fundamental research to focus research toward scalable technologies that will impact the global carbon balance, and efficiently transfer fundamental knowledge into technology development.
- Be a global innovation hub for science, technology and policy solutions to the world's most critical energy and environmental challenges

Carbon Cycle 2.0 Core Objectives

- Promote the construction of key analytical and computational facilities at Berkeley Lab that will facilitate next generation chemical-, materials-, biological- and geo-science
- Educate the public, the neighboring community, and laboratory staff about energy-climate issues and the role the Lab is playing in addressing them
- Develop partnerships with UC Berkeley, other national labs and universities, and industry, to enhance Berkeley Lab's potential to contribute to energy-climate solutions
- Greatly improve energy efficiency and decrease the carbon footprint of the lab site through the use of innovative building design and technologies

Carbon Cycle 2.0

Pioneering science for sustainable energy solutions

Photosynthesis

